16 Oct 2022

[Publication] A Framework for Undergraduate Data Collection Strategies for Student Support Recommendation Systems in Higher Education

Paper by Herkulaas Combrink, Vukosi Marivate, Benjami Rosman

Members

Herkulaas Combrink, Vukosi Marivate, Benjami Rosman

Abstract

Understanding which student support strategies mitigate dropout and improve student retention is an important part of modern higher educational research. One of the largest challenges institutions of higher learning currently face is the scalability of student support. Part of this is due to the shortage of staff addressing the needs of students, and the subsequent referral pathways associated to provide timeous student support strategies. This is further complicated by the difficulty of these referrals, especially as students are often faced with a combination of administrative, academic, social, and socio-economic challenges. A possible solution to this problem can be a combination of student outcome predictions and applying algorithmic recommender systems within the context of higher education. While much effort and detail has gone into the expansion of explaining algorithmic decision making in this context, there is still a need to develop data collection strategies Therefore, the purpose of this paper is to outline a data collection framework specific to recommender systems within this context in order to reduce collection biases, understand student characteristics, and find an ideal way to infer optimal influences on the student journey. If confirmation biases, challenges in data sparsity and the type of information to collect from students are not addressed, it will have detrimental effects on attempts to assess and evaluate the effects of these systems within higher education.

Publications

  • H. Combrink, V. Marivate, B. Rosman. A Framework for Undergraduate Data Collection Strategies for Student Support Recommendation Systems in Higher Education, * Proceedings of the 2020 SACAIR Conference, 2022. [ML] <> [Paper URL] DOI: 10.48550/arXiv.2210.10657